The skew Schubert polynomials
نویسندگان
چکیده
We obtain a tableau definition of the skew Schubert polynomials named by Lascoux, which are defined as flagged double skew Schur functions. These polynomials are in fact Schubert polynomials in two sets of variables indexed by 321-avoiding permutations. From the divided difference definition of the skew Schubert polynomials, we construct a lattice path interpretation based on the Chen-Li-Louck pairing lemma. The lattice path explanation immediately leads to the determinantal definition and the tableau definition of the skew Schubert polynomials. For the case of a single variable set, the skew Schubert polynomials reduce to flagged skew Schur functions as studied by Wachs and by Billey, Jockusch, and Stanley. We also present a lattice path interpretation of the isobaric divided difference operators, and derive an expression for the flagged Schur function in terms of isobaric operators acting on a monomial. Moreover, we find lattice path interpretations for the Giambelli identity and the Lascoux-Pragacz identity for super-Schur functions. For the super-Lascoux-Pragacz identity, the lattice path construction is related to the code of the partition which determines the directions of the lines parallel to the y-axis in the lattice.
منابع مشابه
Skew Divided Difference Operators and Schubert Polynomials
We study an action of the skew divided difference operators on the Schubert polynomials and give an explicit formula for structural constants for the Schubert polynomials in terms of certain weighted paths in the Bruhat order on the symmetric group. We also prove that, under certain assumptions, the skew divided difference operators transform the Schubert polynomials into polynomials with posit...
متن کاملSkew Schubert Polynomials
We define skew Schubert polynomials to be normal form (polynomial) representatives of certain classes in the cohomology of a flag manifold. We show that this definition extends a recent construction of Schubert polynomials due to Bergeron and Sottile in terms of certain increasing labeled chains in Bruhat order of the symmetric group. These skew Schubert polynomials expand in the basis of Schub...
متن کاملSkew Schubert Functions and the Pieri Formula for Flag Manifolds
We show the equivalence of the Pieri formula for flag manifolds with certain identities among the structure constants for the Schubert basis of the polynomial ring. This gives new proofs of both the Pieri formula and of these identities. A key step is the association of a symmetric function to a finite poset with labeled Hasse diagram satisfying a symmetry condition. This gives a unified defini...
متن کاملThe Pieri Formula for Flag Manifolds
We show the equivalence of the Pieri formula for ag manifolds with certain identities among the structure constants for the Schubert basis of the polynomial ring. This gives new proofs of both the Pieri formula and of these identities. A key step is the association of a symmetric function to a nite poset with labeled Hasse diagram satisfying a symmetry condition. This gives a uniied deenition o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004